
I AD-A131 654 A DEDUCTIVE APPROACH 0O PROGRAMMING METHO OLOGY(I)
j

ANFORD UNIV CA DEPT 0F COMPUTER SCIENCE Z MANNA
U X DEC 81 NOVA 4-6-C 0687p NC ASSIFED TF/S V/2 Rh-

sommor I83

2.0.

IIJI2 1.6I

QI .25 III I 1

MICROCOPY RESOLUTION TEST CHART

N A T I N HL I R A L 0 A - L

r

SECURITY CLASSIFICATION OF THIS PAGE (When Dore Entered)

PAGE READ INSTRUCTIONSREPORT DOCUMENTATION BEFORE COMPLETING FORM
I REPORT NUMBER 12 GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4 TITLE (and Subtitle) S. TYPE OF REPORT & PERIOD COVERED

Final Report: " A Deductive Approach to Final Technical; 1/80
F 12/81

Programming Methodology" 6 PERFORMING ORG. REPORT NUMBER

AUTHOR(s) B. CONTRACT OR GRANT NUMBER(*)

qProfessor Zohar Manna N00014-76-C-0687

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK
AREA & WORK UNIT NUMBERS

Department of Computer Science
Stanford University
Stanford. C 94305

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research
Information Systems Program 13. NUMBER OF PAGES

800 North Quincy, Arlington, VA 22217 3
14 MONITORING AGENCY NAME a ADDRESS(I/ dlfferent from Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified

1S.. DECLASSIFICATION/DOWNGRAOING
SCHEDULE

6. DISTRIBUTION STATEMENT (of this Report)

Scientific Officer (1); ONR Branch Office (1); ACO (1); NRL Code 2627 (6);
ONR Code 102MR (6); DDC (12). :APPRO,.r'm F'OR PUBLIC F=XAISSDISTRIBUTION UINLLITEL

17. DISTRIBUTION STATEMENT (of the abstrect entered In 1lock 20, If diflerent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide it necessary and Identify by block number)

20 ABSTRACT (Continue vr..| aid. it necessary wid Identify by block number)

DD , O~j.7 1473 EDITrION o,, NV6 .DYE oi gOrgE
SIN 0102.LF-O144801 ___________________

SECURITY CLASSIFICATION OF
r

TI4IS PAGE (Uhee Data Cnml.)

- I ". .i

Accession For

NTIS GRAMI

. ;DTIC TAB
" Unannoun, d

Just ifi cIt i .: . . .

OFFICE OI,' NAVAlI RESEARCII
GRANT N00014-76-C-0687- FINAL TECHNICAL REPORT By _ _

JANUARY 1080-DECEMBER 1981 Distribution/
Availability Codes

D"is't Avaii and/or

-Orresearch-i4s concentrated on the following topicsSe

a)-'rerification of Concurrent programs: The Temporal Framework ([1)j

We first introduce temporal logic as a tool for reasoning about sequences of states. Models
of concurrent programs based both on transition graphs and on linear-text representations are
presented and the notions of concurrent and fair executions are defined.

The general temporal language is then specialized to reason about those execution sequences
that are fair computations of a concurrent program. Subsequently, the language is used to describe
properties or concurrent programs.

The set of interesting properties is classified into invariance (safety), eventuality (liveness),
and precedence (until) properties. Among the properties studied are: partial correctness, global
invariance, clean behavior, mutual exclusion, absence or deadlock, termination, total correctness,
intermittent assertions, accessibility, responsiveness, safe liveness, absence of unsolicited response,
I'air responsiveness, and precedence.

b Verification of Concurrent Programs: Temporal Proof Principle ([21).

Here, we present temporal proof methods for establishing properties of concurrent programs.
We consider three classes of properties: invariances, eventualities (liveness properties) and precedence
(until properties).

The proof principle for establishing invariance properties is based on computational induction,
and is a generalization of the inductive assertions method. For a restricted class of programs we
present an algorithm for the automatic derivation of invariant assertions.

In order to establish eventuality properties we present several principles which translate the
structure of the program into basic temporal statements about its behavior. These principles can
be viewed as providing the temporal semantics of the program. The hasic statements thus derived
are then combined into temporal proofs for the estblishment of eventuality properties. This method
generalizes the method of intermittent assertions.

An until property is shown to be essentially a combination of a conditional invariance and an
eventuality. Consequently the proof method for establishing an until property is a generalization
of' the method ror esLablishirg eventualities.

All the methods are applied to examples..

co'Verification of Sequential Programs: Temporal Axiomatization' ([3]).

Earlier, we introduced temporal logic as a tool for reasoning about concurrent programs and
specilying their properties ([I]) and presented proof principles for establishing these properties ([21).
Ilere, we restrict ourselves to deterministic, sequential programs. We present a proof system in
which properties of such programs, expressed as temporal formulas, can be proved formally.

83 08 10 o02

Our proof system consists of three parts: a general part elaborating the properties of temporal

logic, a domain part giving an axiomatic description of tile data domain, and a program part giving
an axiomatic description of the program under consideration.

We illustrate the use of the proof system by giving two alternative formal proofs of the total
correctness of a simple program.

d)Synthesis of Communicating Processes from Temporal Specifications',(14]).

We apply Propositional Temporal Logic (PTL) to the specification and synthesis of the synchro-
nization part of communicating processes. To specify a process, we give a PTL formula that
describes its sequence of communications. The synthesis is done by constructing a model of the
given specifications using a tableau-like satisfiability algorithm for PTL. This model can then be
interpreted as a program.

e)-Deductive Synthesis of the Unification Algorithn,([5]).

The deductive approach is a formal program construction method in which the derivation
of a program from a given specification is regarded as a theorem-proving task. To construct a
program whose output satisfies the conditions of the specification, we prove a theorem stating the
existence of such an output. The proof is restricted to be sufficiently constructive so that a program
computing the desired output can be extracted directly from the proof. The program we obtain
is applicative and may consist of several mutually recursive procedures. The proof constitutes a
demonstration of the correctness of this program.

To exhibit the full power of the deductive approach, we apply it to a nontrivial example -

the synthesis of a unification algorithm. Unification is the process of finding a common instance
of two expressions. Algorithms to perform unification have been central to many theorem-proving
systems and to some programming-language processors.

The task of deriving a unification algorithm automatically is beyond the power of existing
program synthesis systems. In this paper we use the deductive approach to derive an algorithm from
a simple, high-level specification of thc unification task. We will identify sonic of the capabilities

-- required of a theorem-proving system to perform this derivation automatically.

f)-Special Relations in Program Synthetic Deduction.(6]).

Program synthesis is the automated derivation of a computer program from a given specifi-

cation. In the deductive approach, the synthesis of a program is regarded as a theorem-proving
problem; the desired program is constructed as a by-product of the proof. This paper presents
a formal deduction system for program synthesis, with special features for handling equality, the
equivalence connective, and ordering relations.

In proving theorems involving the equivalence connective, it is awkward to remove all the
quantifiers before attempting the proof. The system therefore deals with partially skolemized

sentences, in which some of the quantifiers may be left in place. A rule is provided for removing
individual quantifiers when required after the proof is under way.

The system is also nonclausal; i.e., the theorem" does not need to be put into conjunctive

normal form. The equivalence, implication, and other connectives may be left intact.

2

Publications

(11 Z. Manna, A. Pnueli, "Verification of Concurrent Programs: The Temporal Framework", in
The Correctness Problem in Computer Science (R. S. Boyer and J S. Moore, eds.), International
Lecture Series in Computer Science, Academic Press, London, 1981.

(2] Z. Manna, A. Pnueli, "The Temporal Verification of Concurrent Programs: Temporal Proof
Principles", Proc. of the Workshop on Logics of Programs (Yorktown-Heights, NY), Springer-
Verlag Lecture Notes in Computer Science, 1981.

[3] Z. Manna, "Verification of Sequential Programs: Temporal Axiomatization", in Theoretical
Foundations of Programming Methodologay (F. L. Bauer, E. W. Dijkstra, and C. A. R. Hoare,
eds.), NATO Scientific Series, D. Reidel Pub. Co., Holland, 1981.

[4] Z. Manna, P. Wolper, "Synthesis of Communicating Processes from Temporal Specifications"
Proceedings of the Workshop on Logics of Programs (Yorktown-Heights), NY, Springer-Verlag
Lecture Notes in Computer Science, 1981.

(5] Z. Manna, R. Waldinger, "Deductive Synthesis of the Unification Algorithm", Science of
Computer Programming 1 (1981), pp. 5-48.

[6] Z. Manna, R. Waldinger, "Special Relations in Program Synthetic Deductions", Technical
Report, Computer Science Department, Stanford University, April 1982.

3

... ., , ...

